Черные дыры не так уж черны
При таком скудном количестве черных дыр могло бы показаться неправдоподобным, чтобы какая-нибудь из них оказалась очень близко от нас и ее можно было бы наблюдать как некий отдельный источник гамма-излучения. Но поскольку под действием гравитации первичные черные дыры должны притягиваться к любому веществу, их должно быть гораздо больше внутри и вокруг галактик. Следовательно, хотя вычисленный фон гамма-излучения говорит о том, что в одном кубическом световом году не может быть в среднем больше 300 первичных черных дыр, он не дает никакой информации о том, насколько часто первичные черные дыры встречаются в нашей собственной Галактике. Если бы их было, скажем, в миллион раз больше, то ближайшая к нам черная дыра могла оказаться на расстоянии тысячи миллионов километров, т. е. примерно на уровне Плутона, самой далекой из известных планет. На таком расстоянии все равно очень трудно зарегистрировать постоянное излучение черной дыры, даже если его мощность равна десяти тысячам мегаватт. Для наблюдения первичной черной дыры требуется зарегистрировать несколько гамма-квантов, пришедших с одной и той же стороны, в течение какого-нибудь разумного интервала времени, скажем за неделю. Иначе они могут оказаться просто частью фона. Но по закону Планка каждый гамма-квант обладает большой энергией, так как гамма-излучение имеет высокую частоту, следовательно, для излучения даже десяти тысяч мегаватт потребуется не очень много квантов. А для наблюдения этих нескольких квантов, пришедших с расстояния, равного расстоянию до Плутона, нужен был бы детектор гамма-излучения намного большего размера, чем любой из ныне существующих. Кроме того, этот детектор нужно было бы поместить в космосе, потому что гамма-излучение не проходит через атмосферу.
Разумеется, если бы черная дыра, находящаяся на расстоянии Плутона, закончив свой жизненный цикл, взорвалась, последний всплеск излучения можно было бы с легкостью зарегистрировать. Но если черная дыра продолжает излучать в течение последних десяти или двадцати тысяч миллионов лет, то шансы на то, что ее гибель придется на ближайшие несколько лет, а не на те несколько миллионов лет, что уже прошли или еще наступят, действительно очень малы! Значит, чтобы иметь реальную возможность увидеть взрыв до окончания финансирования эксперимента, вы должны придумать, как регистрировать взрывы, происходящие на расстоянии порядка одного светового года. Вам все равно будет нужен большой детектор гамма-излучения, чтобы зарегистрировать несколько гамма-квантов из тех, что образуются при взрыве. Но в этом случае отпадает необходимость проверять, что все гамма-кванты приходят с одной и той же стороны: достаточно будет знать, что все они зарегистрированы в течение очень короткого промежутка времени, чтобы быть уверенным в том, что их источником является одна и та же вспышка.
Один из детекторов гамма-излучения, с помощью которого можно было бы опознавать первичные черные дыры, – это вся атмосфера Земли. (Во всяком случае, вряд ли нам удастся построить детектор большего размера!) Когда гамма-квант, обладающий высокой энергией, сталкивается в земной атмосфере с атомами, рождаются пары из электронов и позитронов (антиэлектронов), которые в свою очередь сталкиваются с атомами и образуют новые электронно-позитронные пары. Возникает так называемый электронный ливень. Связанное с ним излучение представляет собой один из видов светового и называется черенковским. Поэтому вспышки гамма-излучения можно регистрировать, следя за световыми вспышками в ночном небе. Существуют, конечно, и другие явления (такие, как молния и отражение света от крутящихся спутников и обращающихся по орбитам ступеней ракет-носителей), которые тоже сопровождаются вспышками на небе. Вспышки, обусловленные гамма-излучением, можно отличить от этих явлений, проводя наблюдения одновременно из двух или большего числа пунктов, сильно удаленных друг от друга. Такие поиски предприняли в Аризоне двое ученых из Дублина, Нил Портер и Тревор Уикс. С помощью телескопов они обнаружили несколько вспышек, но ни одну из них нельзя было с определенностью приписать всплескам гамма-излучения первичных черных дыр.
Даже если поиск первичных черных дыр даст отрицательные результаты, а он может их дать, мы все равно получим важную информацию об очень ранних стадиях развития Вселенной. Если ранняя Вселенная была хаотической, или нерегулярной, или если давление материи было мало, можно было бы ожидать образования значительно большего числа черных дыр, чем тот предел, который нам дали наблюдения фона гамма-излучения. Объяснить, почему черные дыры не существуют в таком количестве, в котором их можно было бы наблюдать, можно лишь в том случае, если ранняя Вселенная была очень гладкой и однородной, с высоким давлением вещества.
Вывод о том, что черные дыры могут испускать излучение, был первым предсказанием, которое существенным образом основывалось на обеих великих теориях нашего века – общей теории относительности и квантовой механике. Вначале этот вывод встретил сильное противодействие, так как шел вразрез с распространенным представлением: "Как черная дыра может что бы то ни было излучать?" Когда я впервые объявил о своих результатах на конференции в Резерфордовской лаборатории под Оксфордом, все к ним отнеслись недоверчиво. В конце доклада председатель секции Джон Тейлор из Королевского колледжа в Лондоне заявил, что все это чепуха. Он даже написал статью, чтобы доказать, что я не прав. Но в конце концов большинство, в том числе и Джон Тейлор, пришли к выводу, что черные дыры должны излучать как горячее тело, если только верны все остальные представления общей теории относительности и квантовой механики. Таким образом, хотя нам и не удалось отыскать первичную черную дыру, но если бы вдруг это удалось, то, по довольно общему убеждению, черная дыра должна была бы испускать мощное гамма- и рентгеновское излучение.
Вывод о существовании излучения, испускаемого черными дырами, по-видимому, означает, что гравитационный коллапс не так уж окончателен и необратим, как мы думали раньше. Если астронавт упадет в черную дыру, то ее масса увеличится, но в конце концов количество энергии, эквивалентное этой прибавке массы, вернется во Вселенную в форме излучения. Следовательно, в каком-то смысле астронавт будет "регенерирован". Это, конечно, не самый лучший вид бессмертия: собственное представление о времени у астронавта почти наверняка пропадет, когда он разлетится на клочки внутри черной дыры! Даже частицы, испущенные черной дырой для компенсации массы астронавта, будут не теми, из которых он состоял: единственное свойство астронавта, которое сохранится, – это его масса или энергия.
Приближения, которыми я пользовался в расчетах излучения черных дыр, должны хорошо выполняться, когда масса черной дыры превышает доли грамма, но они неприменимы в конце жизни черной дыры, когда ее масса становится очень малой. По-видимому, наиболее вероятный исход – это просто исчезновение черной дыры, по крайней мере из нашей области Вселенной. Исчезнув, она унесет с собой и астронавта, и любую сингулярность, которая могла бы в ней оказаться. Это было первое указание на возможность устранения квантовой механикой сингулярностей, предсказываемых общей теорией относительности. Однако те методы, которыми и я, и другие ученые пользовались в 1974 г., не могли дать ответы на такие вопросы, как, например, появятся ли сингулярности в квантовой гравитации. Поэтому начиная с 1975 г. я занялся разработкой более действенного подхода к квантовой гравитации, основанного на фейнмановском суммировании по историям (траекториям). Ответы, полученные при таком подходе, на вопросы о происхождении и судьбе Вселенной и того, что в ней находится, например астронавтов, будут изложены в двух следующих главах. Мы увидим, что хотя принцип неопределенности налагает ограничения на точность всех наших предсказаний, он зато устраняет фундаментальную непредсказуемость, возникающую в сингулярности пространства-времени.